Extension Theorems on Weighted Sobolev Spaces

SENG-KEE CHUA

ABSTRACT. Let $w_i \in A_{p_i}$, $1 \le p_i < \infty$ for i = 1, 2, ..., N. For any unbounded (ε, ∞) domain \mathcal{D} , by modifying a technique of P. Jones (cf. [11]), we show that there exists an extension operator Λ on \mathcal{D} such that

$$\|\nabla^{k_i} \Lambda f\|_{L^{p_i}_{w_i}(\mathbb{R}^n)} \le C_i \|\nabla^{k_i} f\|_{L^{p_i}_{w_i}(\mathcal{D})}$$

for all i where C_i depends only on ε , w_i , k_i , n and $\max_i k_i$. Moreover, when \mathcal{D} is a bounded (ε, ∞) domain, a similar but weaker result holds. We also extend P. Jones' result on (ε, δ) domains to A_p —weighted Sobolev spaces. Finally, many applications such as Sobolev interpolation inequalities and Nirenberg-type inequalities on (ε, ∞) domains are given.

Introduction. Let \mathcal{D} be an open set in \mathbb{R}^n . If α is a multi-index, $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in \mathbb{Z}_+^n$, we will denote $\sum_{j=1}^n \alpha_j$ by $|\alpha|$ and $D^{\alpha} = (\partial/\partial x_1)^{\alpha_1} \cdots (\partial/\partial x_n)^{\alpha_n}$. By $\alpha \geq \beta$, we mean $\alpha_j \geq \beta_j$ for all $1 \leq j \leq n$. Moreover, we write $\alpha > \beta$ if $\alpha \geq \beta$ and $\alpha \neq \beta$. We denote by ∇ the vector $(\partial/\partial x_1, \partial/\partial x_2, \dots, \partial/\partial x_n)$ and by ∇^m the vector of all possible m^{th} -order derivatives for $m \in \mathbb{N}$. A locally integrable function f on \mathcal{D} has a weak derivative of order α if there is a locally integrable function (denoted by $D^{\alpha}f$) such that

$$\int_{\mathcal{D}} f(D^{\alpha}\varphi) \ dx = (-1)^{|\alpha|} \int_{\mathcal{D}} (D^{\alpha}f)\varphi \ dx$$

for all C^{∞} functions φ with compact support in \mathcal{D} (we will write $\varphi \in C_0^{\infty}(\mathcal{D})$).

If 1 , <math>p' is always equal to p/(p-1) and $p' = \infty$ when p = 1. Q will always be a cube and $\ell(Q)$ will be its edgelength. We say that two cubes touch if a face of one cube is contained in a face of the other. By a weight w, we mean a non-negative locally integrable function on \mathbb{R}^n . By abusing notation, we will also write w for the measure induced by w. Sometimes we write dw to denote w dx. We are only interested in the case when w and Lebesgue measure are mutually absolutely continuous. Moreover, we always assume w is doubling,