A Harnack Inequality Approach to the Interior Regularity of Parabolic Equations

Luis A. Caffarelli & Lihe Wang

We continue our investigations on interior regularities. Here we extend the results of [CW] to flows of curvatures.

Introduction. In this paper, we prove $C^{1,\alpha}$ regularity for evolution S(t) of surfaces whose normal velocity S_t equals to a function of its curvature tensor II, normal vector ν , position vector X and time t:

(1)
$$S_t - F(II, \nu, X, t) = R(\nu, X, t),$$

where the curvature tensor II is the second fundamental form in the space direction only and ν its normal in the space direction.

We assume that F is uniformly elliptic in II, Lipschitz in ν and small oscillation in (X,t) in the space of L^{n+1} and that R is locally bounded in ν and decays in L^{n+1} in the variable (X,t). Under these conditions, we show that every Lipschitz solution S of (1) is locally $C^{1,\alpha}$.

By the compactness arguments in [C] and [W2], we see that the $C^{1,\alpha}$ regularity for (1) actually reduces to $C^{1,\alpha}$ regularity for much simpler equations of the type

$$(2) S_t - F(II, \nu) = 0.$$

See Theorem 1.3 in [W2] for details.

Main Theorem. Suppose F satisfies uniformly ellipticity II and Lipschitz in ν as in [CW]. Assume S is, in the sense of (3), a Lipschitz solution of of (2) in the cylinder $C_1 = Q_1(0,0) \times R^1$. Then $S \in C^{1,\alpha}(C_{1/2}(0,0))$. Moreover $||S||_{C^{1,\alpha}(C_{1/2})}$ has an upper bound, depending only on $||S||_{\operatorname{Lip}(C_1)}$ and $||S||_{C^{1,\alpha}(C_{1/2})} \leq C[S]_{\operatorname{Lip}}$ for $[S]_{\operatorname{Lip}} \leq 1$ and some $\alpha > 0$.

In general, we write $C_r(x,t) = Q_r(x,t) \times R^1$.

We refer the reader to [CW] for a more heuristic discussion and reference therein.