Algorithms for Optimizing over Analytic Functions

J. W. HELTON, O. MERINO & T. E. WALKER

ABSTRACT. Let H_N^{∞} be the space of C^N -valued measurable functions on the unit circle ∂D that extend to a uniformly bounded analytic function on the unit disk D. A fundamental optimization problem in frequency domain design where stability is the key constraint are:

(OPT^{\infty}) Given a map
$$\Gamma: \partial D \times C^N \to R^+$$
 and $E \subset H_N^{\infty}$, minimize $\sup_{e^{i\vartheta} \in \partial D} \Gamma(e^{i\vartheta}, f(e^{i\vartheta}))$ over $f \in E$ and find minimizers f^* in E if they exist.

The main contribution of the article is to present an algorithm for solving OPT^∞ when Γ is smooth and E is the set of functions in H_N^∞ that are smooth on ∂D . The algorithm is quadratically convergent and is conceptually different from existing algorithms. In this article we prove that the algorithm is (locally) quadratically convergent to solutions to OPT^∞ and illustrate practical performance of the algorithm with results of computer runs.

Another problem studied in this article is:

Given a map
$$\Gamma: \partial D \times C^N \to R^+$$
 and $E \subset H_N^{\infty}$, minimize $\int_0^{2\pi} \Gamma(e^{i\vartheta}, f(e^{i\vartheta})) d\vartheta/2\pi$ over $f \in E$ and find minimizers f^* in E if they exist

We derive the optimality conditions that characterize local solutions to OPT^1 when $E = A_N$, the set of functions in H_N^∞ that are continuous on ∂D . An algorithm for solving OPT^1 when Γ is smooth and E is the set of smooth H_N^∞ functions is