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1. Introduction. The theory of eigenvalues for compact selfadjoint or
normal operators in Hilbert space is well-nigh perfect: the eigenvectors form
a complete set. Similar results hold for perturbations of such operators which
are small in some sense. Not much is known beyond this, except for Perron-
type results, see [1], [3], that positive operators have a positive eigenvalue with
a positive eigenfunction. In this note we show how to use Lidskii’s celebrated
trace formula, see [1] and [3], to ascertain that a given integral operator has a
nonzero eigenvalue or not.

2. We assume that the reader is familiar with the theory of trace class
operators in Hilbert space. The trace of such an operator K is defined as its
matrix trace:

(1) trK = Z(Kemen) )

where {e, } is any orthonormal basis; the value of the trace is independent of the
orthonormal basis chosen.
Suppose K is an integral operator, say on the interval [0,1]:

() (K f)(z) = / K(z,y) F(v)dy

acting on functions f in L2[0,1]. If the kernel k(z,y) is smooth enough, the
integral operator K given by (2) is of trace class. Furthermore its trace is given
by the integral of its diagonal:

3) tr K = /k(x,x)da; .
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