The Bifurcation of Periodic Solutions of the Nonlinear Telegraph Equation and Infinite Dimensional Singularity Theory

MELVYN BERGER & GUOZHANG SUN

1. Introduction. In this article, we consider the bifurcation of T-periodic solutions of the boundary value problem of the nonlinear telegraph equation:

(1)
$$u_{tt} + \alpha u_t + Lu - f(u) = g(x,t) \qquad \text{in } \Omega \times R,$$
$$u = 0 \qquad \text{on } \partial\Omega \times R,$$

obtained for a given smooth forcing term g(x,t), which is T-periodic in t. Here $\alpha \neq 0$ is a constant and the domain $\Omega \subset R^n$ is an arbitrary bounded domain with smooth boundary $\partial \Omega$. The operator L is a uniformly elliptic, formally self-adjoint second order differential operator defined on Ω .

The function f generating the nonlinearity is specialized in two interesting cases:

(i) f is a C^2 -convex function such that f''(0) > 0 and f(0) = 0, satisfying the asymptotic conditions:

$$0 < \lim_{s \to -\infty} \frac{f(s)}{s} < \lambda_1; \quad \lambda_1 < \lim_{s \to +\infty} \frac{f(s)}{s} < \lambda_2$$

where λ_1 , λ_2 are the lowest two eigenvalues of L.

(ii) $f(s) = \lambda s - b(s)$ where λ is a parameter and the function $b: R \to R$ is a C^3 function such that the derivatives of b satisfy:

$$b'(s) > 0$$
 for every $s \neq 0$,
 $b^{(j)}(0) = 0$ for $j = 0, 1, 2$;
 $b^{(3)}(s) > b^{(3)}(0) > 0$ for all $|s| < 1$.

Here the function b is given as $b(s) \sim s^3$ for |s| < 1 and $b(s) \sim s$ for $|s| \ge 1$.