Smoothness at Infinity

PATRICK AHERN & WALTER RUDIN

ABSTRACT. It is proved that a connected analytic subvariety of \mathbb{C}^n that is smooth at infinity is a translate of a linear subspace of \mathbb{C}^n , and that an automorphism of \mathbb{C}^n that fixes the origin is smooth at infinity if and only if it is a multiple of a unitary transformation.

While trying to determine whether every periodic automorphism of \mathbb{C}^n is conjugate to a linear one we became aware of some topological results concerning periodic diffeomorphisms of spheres (such as Proposition 6 in [1]) which looked as if they could shed some light on our problem. They could of course be relevant to only those automorphisms of \mathbb{C}^n that are smooth at infinity, and this led us to ask: Which automorphisms F of \mathbb{C}^n are smooth at infinity?

This question has a (to us) surprisingly simple answer, given by Theorem I of the present paper.

Our first proof of that result was based on an investigation of the zero-sets of the components of F. We thus derived Theorem I from a special case of what is now Theorem II. The latter characterizes those analytic subvarieties of \mathbb{C}^n that are smooth at infinity. It was only later that we found the extremely simple proof of Theorem I which is given here.

We define smoothness at infinity by means of the inversion

$$(1) x \to \tau(x) = \frac{x}{|x|^2}$$

where |x| is the euclidean distance from the origin to $x \in \mathbb{C}^n$ (or $x \in \mathbb{R}^N$). It is understood that $\tau(0) = \infty$, $\tau(\infty) = 0$, so that τ is a homeomorphism of the one-point compactification of \mathbb{C}^n , or \mathbb{R}^N .

Two obvious properties of τ are

(2)
$$\tau^{-1} = \tau, \ |\tau(x)| = 1/|x|.$$

Definition. A map $F:\mathbb{C}^n \to \mathbb{C}^n$ is said to be \mathcal{C}^1 -smooth at infinity if its conjugate

$$\Phi = \tau^{-1} F \tau \,,$$

defined on $\mathbb{C}^n \setminus \{0\}$, extends to \mathbb{C}^n so as to be continuously differentiable in a neighborhood of the origin.