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1. Introduction. Many of the most important algorithms of mathematics
are iterative, and in the good cases quadratically convergent. The most typical of
these is Newton’s method. If zg is a root of the equation f(z) = 0 and f’(zo) # 0,
then if you start iterating Newton’s algorithm at some yy sufficiently close to zy,
generating the sequence vg,%1,¥2,..., you can expect the errors E,, = |y, — zo|
to satisfy approximately E,y1 ~ (E,)?, so that E, ~ (F)?".

Note that this is very much more rapid than geometric convergence, where
E, ~ o™ Ey for some « satisfying 0 < a < 1: in one case you double the number
of correct digits, in the other you add approximately —log,, o correct digits in
base m at each iteration.

A fixed point zy of a mapping f will be called superattractive if there is a
neighborhood U of zy such that

£ (y) = zo| < CLFP" D (y) — wol?

for some constant C, and all n > 0, y € U.

In this paper we will try to analyze the behavior of an analytic mapping f
near a superattractive fixed point zg; the condition above shows that the linear
terms of f vanish at xg.

In dimension one, there is a very clean way of saying essentially all there is
to say about the local behavior of f near zo. If f(xo+u) = zo +au® +--- with
a # 0, then there is an analytic local coordinate ¢ at xo such that (f(z)) =
@(z)*. The local coordinate is called the Béttcher coordinate; it is unique up to
multiplication by a (k — 1) root of 1 [M and DH].

The analogous statement is false in higher dimensions. Let f : U — C™ be
an analytic map defined on an open subset U C C", and xg a superattractive
fixed point of f. When n > 2, the map f is not in general locally conjugate,
even topologically, to its terms of lowest degree; the local geometry near such a
point is much too rich for anything like that to be true.

To see this, consider the case n = 2, and suppose zo = 0. Generically such
a mapping f has near 0 a critical locus which consists of two transversal non-
singular curves. Since the critical locus is exactly the set of points at which the
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