Continuity and Harnack's Inequality for Solutions of Elliptic Partial Differential Equations of Second Order

KAZUHIRO KURATA

ABSTRACT. We show local boundedness, continuity, Harnack's inequality and the property $|\nabla u|^2 \in K_n^{\text{loc}}(\Omega)$ for weak solutions u of $-\text{div}(A(x)\nabla u) + \mathbf{b}(x) \cdot \nabla u + V(x)u = 0$, where V and $|\mathbf{b}|^2$ belong to the local Kato class.

1. Introduction and main results. We consider the following elliptic equations of second order with real coefficients:

(1)
$$Lu \equiv -\operatorname{div}(A(x)\nabla u(x)) + \mathbf{b}(x) \cdot \nabla u(x) + V(x)u(x) = 0 \quad \text{in } \Omega,$$

where Ω is a bounded domain in \mathbf{R}^n , $n \geq 3$ and $A(x) = (a_{ij}(x))$ satisfies

(2)
$$a_{ij}(x) = a_{ji}(x), \quad \lambda |\xi|^2 \le \sum_{i,j=1}^n a_{ij}(x)\xi_i \xi_j \le \lambda^{-1} |\xi|^2,$$

for some $\lambda \in (0,1]$ and for every $x \in \Omega$, $\xi \in \mathbf{R}^n$. Define

$$\eta(f;r) = \sup_{x \in \mathbf{R}^n} \int_{B_r(x)} \frac{|f(y)|}{|x - y|^{n-2}} \, dy$$

and $\eta(f;r;G)=\eta(f\chi_G;r)$. Here χ_G is the characteristic function of G and $B_r(x)=\{y\in\mathbf{R}^n;\ |x-y|< r\}$ for r>0. We say $V\in K_n(\Omega)$ if $\lim_{r\to 0}\eta(V;r;\Omega)=0$ and say $V\in K_n^{\mathrm{loc}}(\Omega)$ if $\lim_{r\to 0}\eta(V;r;\Omega_1)=0$ for each bounded domain Ω_1 with $\bar{\Omega}_1\subset\Omega$. The main assumptions of this paper are as follows:

Assumption A. V, $|\mathbf{b}|^2 \in K_n^{\text{loc}}(\Omega)$.