$\begin{array}{c} On \ Uniform \\ Approximation \ Problems \ and \\ T\mbox{-}Invariant \ Algebras \end{array}$

LIMING YANG

ABSTRACT. Let K be a compact subset of the complex plane $\mathbb C$ and let P(K) denote the uniform closure of analytic polynomials in z. Let A and B be two T-invariant algebras and let g be a C^1 function with compact support. In this paper, we prove that, for a large class of C^1 functions g, the inclusion $A \subset B \subset \operatorname{clos}(P(K)g + A)$ implies A = B.

1. Introduction. Let Λ be a constant coefficient elliptic differential operator in \mathbb{R}^n . For a compact subset $K \subset \mathbb{R}^n$ let $H(K,\Lambda)$ and $h(K,\Lambda)$ denote the uniform closures in C(K) of the set

 $\{f|_K : \Lambda f = 0 \text{ in some neighbourhood of } K\}$

and the set

$$C(K) \cap \{\Lambda f = 0 \text{ in the interior of } K\},\$$

respectively. One of uniform approximation problems is to characterize those K for which $H(K,\Lambda) = h(K,\Lambda)$.

A complete solution for $\Lambda = \Delta$ was obtained by Deny [D] and Keldysh [K] using a duality argument relying on classical potential theory. Let Cap denote the Wiener capacity in potential theory. Their theorem is as follows.

Theorem (Deny-Keldysh). The identity $H(K, \Delta) = h(K, \Delta)$ occurs if and only if for each open ball B one has $\operatorname{Cap}(B \setminus \operatorname{int} K) = \operatorname{Cap}(B \setminus K)$.

Using a constructive scheme for uniform approximation (based on a localization operator), Vitushkin [Vi] solved in the sixties the problem for $\Lambda = \bar{\partial}$ (the Cauchy-Riemann operator in the plane).

Theorem (Vitushkin). The identity $H(K, \bar{\partial}) = h(K, \bar{\partial})$ occurs if and only if for each open disc O one has $\alpha(O \setminus \text{int } K) = \alpha(O \setminus K)$, where α is the continuous analytic capacity (see [Vi]).