On Fast Diffusion Nonlinear Heat Equations and a Related Singular Elliptic Problem

Panagiota Daskalopoulos & Manuel A. del Pino

ABSTRACT. We provide necessary conditions on u_0 for the solvability of the problem

$$\frac{\partial u}{\partial t} = \operatorname{div}(u^{m-1}\nabla u) \quad \text{in } \mathbf{R}^N \times (0,T),$$

$$u(x,0) = u_0(x) \quad \text{in } \mathbf{R}^N,$$

where T > 0, $m < \min\{0, (N-2)/N\}$ or m = 0, N = 2. We also find both, necessary and sufficient conditions for the solvability of the elliptic problem

$$\Delta u + u^{-\nu} = f(x), \quad x \in \mathbf{R}^N,$$

where $\nu > 0$, $N \ge 2$, which is obtained by discretization of the parabolic problem when $\nu = -1/m$.

Introduction. Our aim in the first part of this paper is to provide a sharp necessary condition for the solvability of the Cauchy problem

(1.1)
$$\frac{\partial u}{\partial t} = \operatorname{div}(u^{m-1}\nabla u) \qquad \text{in } \mathbf{R}^N \times (0, T),$$

$$(1.2) u(x,0) = u_0(x) in \mathbf{R}^N,$$

where T > 0, $m \le 0$ are given constants and u_0 is a nonnegative, locally integrable function. Equation (1.1) can also be written as

(1.3)
$$\frac{\partial u}{\partial t} = \Delta \varphi_m(u) \qquad \text{in } Q_T,$$