On the Trace Inequalities for Hardy-Sobolev Functions in the Unit Ball of \mathbb{C}^n

W. S. Cohn & I. E. Verbitsky

ABSTRACT. We characterize "invariant measures" on the spheres in \mathbb{C}^n for which the trace inequality,

$$\int_{\mathbf{S}} (M_{\alpha} F)^p \, d\mu \le C \|F\|_{H_{\beta}^p}^p,$$

holds for holomorphic functions F in the Hardy-Sobolev spaces H^p_{β} , where $1 , and <math>M_{\alpha}$ is the admissible maximal function. In contrast to the known imbedding theorems for Euclidean Sobolev spaces, we obtain characterizations that distinguish the cases 1 and <math>2 . Applications to exceptional sets are also given.

0. Let **S** be the boundary of \mathbf{B}_n , the unit ball in \mathbf{C}^n , and $d\sigma$ the rotation invariant measure defined on **S**. We define the non-isotropic potential of a function $f \in L^1(d\sigma)$ by

$$I_{\beta}f(\eta) = \int_{\mathbf{S}} \frac{f(\zeta)}{|1 - \langle \eta, \zeta \rangle|^{n-\beta}} \, d\sigma,$$

where $\eta \in \mathbf{S}$ and $0 < \beta < n$.

If $1 , let <math>L^p_{\beta}$ be the space of potentials $F = I_{\beta}f$ where $f \in L^p(d\sigma)$ with norm

$$||F||_{L^p_\beta} = ||f||_{L^p(d\sigma)}.$$

In the case when β is an integer, L^p_{β} coincides with a (non-isotropic) Sobolev space on **S**. We will also need the Hardy-Sobolev spaces, H^p_{β} (0 < β , p < ∞), of functions F holomorphic in the unit ball. Let

$$F(z) = \sum_{k} f_k(z)$$

1079

Indiana University Mathematics Journal ©, Vol. 43, No. 4 (1994)