\mathbf{L}^p -Integrability of the Second Order Derivatives for the Neumann Problem in Convex Domains

VILHELM ADOLFSSON & DAVID JERISON

ABSTRACT. We give estimates in L^p , $1 , for the second order derivatives of the solution to the inhomogeneous Neumann problem in a convex domain. We also show that there is an atomic decomposition of functions in the Hardy space <math>H^1$ that vanish outside a domain if and only if the domain is a uniform domain in the sense of P. W. Jones.

Introduction. The purpose of this paper is to prove that for a convex domain Ω in \mathbf{R}^n , the second order derivatives $\nabla^2 u$ of the solution u to the Neumann problem for the Poisson equation with data f, are in $L^p(\Omega)$ if $f \in L^p(\Omega)$ with $1 . To avoid technicalities we assume throughout the paper that <math>n \ge 3$. The main result of the paper is:

Theorem. Suppose Ω is a bounded convex domain in \mathbf{R}^n and $f \in L^p(\Omega)$, $1 and <math>\int_{\Omega} f = 0$. Then there exists a solution u in $W^{2,p}(\Omega)$ solving

$$\left\{ \begin{aligned} \Delta u &= f & in \ \Omega, \\ u_{\nu} &= 0 & on \ \partial \Omega, \end{aligned} \right.$$

and $u_{\nu} = \nu \cdot \nabla u$ denotes the (outer) normal derivative of u. Moreover,

$$\int_{D} |\nabla^{2} u|^{p} dx \le C \int_{D} |f|^{p} dx,$$

where ∇^2 denotes the second order derivatives and the constant C depends only on the Lipschitz constant of the domain.