Two Results on Separating Vectors

W. Gong, D. R. Larson & W. R. Wogen

ABSTRACT. We show that a linear space of bounded operators with denumerable Hamel basis has a separating vector if and only if its subspace of finite rank operators has a separating vector, and also that the weakly closed algebra generated by a triangular operator has a separating vector. Moreover, we prove density of the set of all separating vectors.

A separating vector for a linear subspace \mathscr{S} of linear transformations on a vector space V is a vector $x \in V$ for which the map $S \to Sx$ from \mathscr{S} to V is injective. The purpose of this note is to settle two separating vector problems which arose in our earlier work and which have been open for several years.

In Theorem 8 we answer a question in [L], which arose in a study of reflexivity, and show that if $\mathscr S$ is a linear subspace of $\mathscr B(X)$ for a Banach space X, and if $\mathscr S$ has a denumerable Hamel basis, then $\mathscr S$ has a separating vector if and only if the linear subspace $\mathscr S_F$ of finite rank operators in $\mathscr S$ has a separating vector. Moreover, in this case $\operatorname{sep}(\mathscr S)$ is dense in X, where $\operatorname{sep}(\mathscr S)$ denotes the set of all separating vectors for $\mathscr S$. In the types of applications we have in mind, X will often be an operator algebra.

In Corollary 12 we show that if T is a Hilbert space operator which is triangular in the sense that there is an orthonormal basis $\{e_i\}$, such that $Te_n \in \text{span}\{e_1,\ldots,e_n\}$ for each n, then the weak operator topology closed algebra $\mathscr{W}(T)$ generated by T and I has a separating vector. (In fact, we prove the stronger result that $\text{sep}(\mathscr{W}(T))$ is dense, and we obtain this in a somewhat wider setting.) The question of validity of this was raised formally in [LW1] and [HLW], although it had been considered earlier, and was motivated by a counterexample constructed in [W] of a Hilbert space operator S for which $\mathscr{W}(S)$ fails to have a separating vector. Theorems 8 and 11 are related in that the ideas that led to a proof of the first inspired the proof of the second.

We refer the reader to [H] for an extensive exposition of triangular operators, and to [LW1] for a discussion of some open questions. In this article all vector spaces will be assumed complex. If V is a vector space we use $\mathcal{L}(V)$ to denote