An Extension of Szegő's Theorem

JOHN AKEROYD

ABSTRACT. In this paper we examine the extent to which the divergence of an integral of the type given by Szegő's Theorem implies the existence of a nontrivial $L^t(\mu)$ -summand in $P^t(\mu)$ (the closure of the polynomials in $L^t(\mu)$) for measures μ whose supports are topologically equivalent to $\{z:|z|<1$ and $\mathrm{Im}(z)\leq 0\}\cup\{z:|z|=1\}$. We also show that, in contrast with the setting of Szegő's Theorem, outer functions can have only a limited role in our investigation.

1. Introduction. A natural starting point for us is a general form of Szegő's Theorem (see [G; Theorem 3.1, p. 144], or Theorem 1.1 below), which requires a brief preliminary discussion of harmonic measure.

For any bounded, simply connected region G in the complex plane \mathbb{C} , and for any point z_0 in G, we let $\omega(\cdot,G,z_0)$ (or just ω_G) denote harmonic measure on ∂G for the (norming) point z_0 . Indeed, $\omega(\cdot,G,z_0)$ is the unique probability measure, given by the Riesz Representation Theorem, with the property that for any continuous real-valued function h on ∂G , $\int_{\partial G} h(\xi) d\omega(\xi,G,z_0) = \hat{h}(z_0)$ —the evaluation at z_0 of the harmonic function \hat{h} on G that has boundary values h. By Harnack's Inequality, $\omega(\cdot,G,z_1)$ and $\omega(\cdot,G,z_2)$ are boundedly equivalent for any two points z_1 and z_2 in G. For this reason, most of the results of this paper are independent of the choice of the norming point in G, and so we predominantly use the ω_G notation for harmonic measure.

We are now in a position to state a general form of Szegő's Theorem. In the statement of this theorem, and throughout the rest of this paper, we let \mathbf{D} denote the unit disk $\{z:|z|<1\}$ and let P denote the collection of polynomials.

Theorem 1.1 (G. Szegő). Let Ω be a Jordan domain, z_0 be a point in Ω and ψ be a conformal map from Ω onto \mathbf{D} such that $\psi(z_0) = 0$. If μ is a finite, positive Borel measure with support in $\partial \Omega$ and $\mu = \mu_a + \mu_s$ is the Lebesgue