An Extension of Szegő's Theorem ## JOHN AKEROYD ABSTRACT. In this paper we examine the extent to which the divergence of an integral of the type given by Szegő's Theorem implies the existence of a nontrivial $L^t(\mu)$ -summand in $P^t(\mu)$ (the closure of the polynomials in $L^t(\mu)$) for measures μ whose supports are topologically equivalent to $\{z:|z|<1$ and $\mathrm{Im}(z)\leq 0\}\cup\{z:|z|=1\}$. We also show that, in contrast with the setting of Szegő's Theorem, outer functions can have only a limited role in our investigation. 1. Introduction. A natural starting point for us is a general form of Szegő's Theorem (see [G; Theorem 3.1, p. 144], or Theorem 1.1 below), which requires a brief preliminary discussion of harmonic measure. For any bounded, simply connected region G in the complex plane \mathbb{C} , and for any point z_0 in G, we let $\omega(\cdot,G,z_0)$ (or just ω_G) denote harmonic measure on ∂G for the (norming) point z_0 . Indeed, $\omega(\cdot,G,z_0)$ is the unique probability measure, given by the Riesz Representation Theorem, with the property that for any continuous real-valued function h on ∂G , $\int_{\partial G} h(\xi) d\omega(\xi,G,z_0) = \hat{h}(z_0)$ —the evaluation at z_0 of the harmonic function \hat{h} on G that has boundary values h. By Harnack's Inequality, $\omega(\cdot,G,z_1)$ and $\omega(\cdot,G,z_2)$ are boundedly equivalent for any two points z_1 and z_2 in G. For this reason, most of the results of this paper are independent of the choice of the norming point in G, and so we predominantly use the ω_G notation for harmonic measure. We are now in a position to state a general form of Szegő's Theorem. In the statement of this theorem, and throughout the rest of this paper, we let \mathbf{D} denote the unit disk $\{z:|z|<1\}$ and let P denote the collection of polynomials. **Theorem 1.1** (G. Szegő). Let Ω be a Jordan domain, z_0 be a point in Ω and ψ be a conformal map from Ω onto \mathbf{D} such that $\psi(z_0) = 0$. If μ is a finite, positive Borel measure with support in $\partial \Omega$ and $\mu = \mu_a + \mu_s$ is the Lebesgue