Remarks on the Preceding Paper by D. Gilbarg

EBERHARD HOPF

Graduate Institute for Applied Mathematics, Indiana University, Bloomington, Indiana

In the preceding paper D. Gilbarg communicated an important generalization of the Phragmén-Lindelöf theorem to linear elliptic differential equations of second order and in two independent variables. It is our object to prove this theorem for n independent variables. Suppose, as Gilbarg does, that the coefficients of the differential operator

(1)
$$L(u) = a_{ik}(x) \frac{\partial^2 u}{\partial x_i \partial x_k} + b_i(x) \frac{\partial u}{\partial x_i}$$

are continuous in the half space $x_n > 0$, $x = (x_1, \dots, x_n)$, and that L is uniformly elliptic in $x_n > 0$:

(2)
$$\frac{\underset{i,k}{\operatorname{Max}} \mid a_{ik}(x) \mid}{\lambda(x)} < A$$

is bounded in $x_n > 0$ if $\lambda(x) > 0$ denotes the smallest proper value of the quadratic form $a_{ik}(x)\xi_i\xi_k$. Uniform ellipticity means, equivalently, that

$$\frac{\Lambda(x)}{\lambda(x)}$$

is bounded in $x_n > 0$ if $\Lambda(x)$ is the greatest proper value.

Theorem. Suppose that the coefficients $a_{ik}(x)$ and $b_i(x)$ are continuous and that L is uniformly elliptic in $x_n > 0$. Suppose moreover that there is a decreasing function p(r) > 0 such that

(3)
$$\int_0^\infty p(r) dr < \infty, \qquad \sum_i \frac{|b_i(x)|}{\lambda(x)} < p(r), \qquad r^2 = x_i x_i.$$