Thin Liquid Jets

JERALD L. ERICKSEN

Applied Mathematics Branch, Mechanics Division, Naval Research Laboratory, Washington, D. C.

Dedicated to the memory of P. F. Neményi

Communicated by C. TRUESDELL

1. Introduction. In 1877 Boussinesq [1] obtained equations of motion for thin liquid jets (water bells), taking into account surface tension and body forces. Using these equations, he was able to give a theoretical explanation of certain phenomena observed by Savart [2]. He considered only the case where the streamlines are meridians on a surface of revolution. His theory predicts that, in the absence of body forces, the streamlines will be catenaries. This paper also contains a stability investigation.

We shall generalize Boussinesq's equations to describe bells not axially symmetric. We derive a rather limited class of solutions for the case where the body force vector is constant and a much larger class for the case when the body force vanishes identically. An important subclass of these latter solutions can be obtained by a simple geometric construction. We derive a substitution principle, valid when the body force vanishes identically, this principle enabling one to construct an infinite number of solutions once one is known. A few facts concerning characteristic curves are established.

Consider the stationary motion of a liquid jet in a homogeneous medium, M, which is at rest. In the jet let p denote pressure, ρ the density, f_i the components of the body force per unit mass, and u_i the velocity components. Assuming the liquid non-viscous and incompressible, the equations of motion are

$$(1.1) p_{,i} + \rho u_{i,j} u^j = \rho f_i,$$

(1.2)
$$u_{,i}^{i} = 0,$$