Uniqueness Theorems for Certain Parabolic Problems

F. A. FICKEN

University of Tennessee, Knoxville, Tennessee

Communicated by M. H. MARTIN

Two uniqueness theorems are presented for parabolic problems on a semi-infinite strip $S: 0 \le x \le 1$, $0 \le t$. The differential equation is $u_{xx} - u_t = N(x, t, u, u_x)$, where N may be nonlinear. The boundary conditions are linear in u_x , may contain u_t linearly, and may be nonlinear in u.

It will be proved first that certain problems of the form

$$u_{xx} - u_t = N(x, t, u, u_x), 0 \le x \le 1, 0 < t,$$

$$u_{x0} - a_0(t)u_{x0} = n_0(t, u_0), x = 0, 0 < t,$$

$$u_{x1} + a_1(t)u_{t1} = n_1(t, u_1), x = 1, 0 < t,$$

$$u(x, 0+) = g(x),$$

(where subscript letters denote partial derivatives) cannot have two solutions in a certain natural class of functions u if the functions $a_0(t)$ and $a_1(t)$ are nonnegative. Here $u_j \equiv u(j, t)$ for j = 0, 1, and similarly for u_{xj} and u_{tj} ; the subscript numbers on a and n are mere indices.

Let P denote any problem of the above form in which the following requirements are met:

- 1. $a_i(t)$ are continuous for t > 0;
- 2. $n_j(t, w)$ are continuous and have partial derivatives n_{jw} that are continuous for 0 < t and $-\infty < w < \infty$, and are bounded uniformly in t;
- 3. N(x, t, y, z), N_y , and N_z are continuous for $0 \le x \le 1$, 0 < t, and $-\infty < y$, $z < \infty$, and are bounded uniformly in x and t;
- 4. g(x) is continuous.

"Uniform boundedness" here means specifically that $|w| \leq \rho$ implies $|n_{jw}| \leq$