Uniqueness Theorems in the Unified Theory of Relativity

V. HLAVATÝ

Graduate Institute for Applied Mathematics, Indiana University, Bloomington, Indiana*

8

A. W. SÁENZ

Applied Mathematics Branch, Mechanics Division, Naval Research Laboratory, Washington, D. C.

I. Introduction.

(1) Denote by X_n an *n*-dimensional space (n > 1). Let $g_{\lambda\mu}$ be a given real tensor in X_n having

$$(1.1) h_{\lambda\mu} = g_{(\lambda\mu)}, k_{\lambda\mu} = g_{[\lambda\mu]},$$

as its symmetric and skew-symmetric parts, respectively. Moreover, introduce the notation

(1.2a)
$$g \equiv \det((g_{\lambda\mu})), \quad h \equiv \det((h_{\lambda\mu})), \quad k \equiv \det((k_{\lambda\mu})).$$

Throughout this paper we assume

$$(1.3a) h \neq 0,$$

so that the scalars

$$(1.2b) G = g/h, K = k/h,$$

are not meaningless.

We consider $h_{\lambda\mu}$ as a metric tensor in X_n , and denote its Christoffel symbols by $\begin{pmatrix} \nu \\ \lambda\mu \end{pmatrix}$, and the covariant derivatives based on $\begin{pmatrix} \nu \\ \lambda\mu \end{pmatrix}$ by ∇_{μ} . Lowering and raising of indices are performed by $h_{\lambda\mu}$ and $h^{\rho\sigma}$, respectively.

^{*} Prepared under Army Contract DA33008 ORD-467.