Large Elastic Deformations of Homogeneous Anisotropic Materials*

J. L. ERICKSEN & R. S. RIVLINT

Applied Mathematics Branch, Mechanics Division, Naval Research Laboratory, Washington, D. C.

Table of Contents

Section	1.	Introduction	281
		Kinematics of deformation	
		Constraints	
		Stress-deformation relations and equations of motion	
		Homogeneous deformation	
		Form invariance of the strain energy	
		Transverse isotropy	
		A five parameter family of equilibrium solutions	
		Simultaneous extension and torsion of a circular cylinder	
Section	10.	Simultaneous inflation and elongation of a hollow cylinder	293
Section	11.	A dislocation solution	293
Section	12.	Bending of a block	29 4
Section	13.	Rotating cylinders	297
Bibliogr	raph	v	298

1. Introduction. Using the natural state theory of elasticity, one can write down stress-strain relations valid for any perfectly elastic material which is initially homogeneous. Various equivalent forms of these relations, together with references as to their origin, are listed in a recent paper by Truesdell [1]. The problem of determining what restrictions are placed on these relations by symmetries which exist in materials is non-trivial and has been solved completely only for isotropic materials, though Birch [2] and Murnaghan [3] have deter-

^{*} Part of this work was done under Army Contract DA-33-008 Ord 454 with Indiana University.

[†] Present address: Brown University, Providence, R. I.