Inequalities for a Classical Eigenvalue Problem*

ROBERT WEINSTOCK

Stanford University, Stanford, California**

Communicated by D. GILBARG

§1. Introduction. (a) Let $\mathfrak D$ be a simply-connected domain in the xy-plane bounded by the simple closed curve $\mathfrak C$, assumed to be analytic. We consider the problem of determining those twice-continuously differentiable functions $\phi = \phi(x, y)$ which satisfy

$$\nabla^2 \phi = 0 \quad \text{in} \quad \mathfrak{D},$$

(1.2)
$$\frac{\partial \phi}{\partial n} = h\phi \quad \text{on} \quad e,$$

where $\partial/\partial n$ indicates differentiation with respect to the *exterior* normal to \mathcal{C} , ∇^2 is the two-dimensional laplacian operator, and h is a constant. We call this the "problem of Stekloff" [5].

It can be shown [1, 2] that only for a discrete infinite set of non-negative real values of h (eigenvalues) do there exist functions ϕ (eigenfunctions) that satisfy (1.1) and (1.2). We denote the totality of eigenvalues by h_0 , h_1 , h_2 , \cdots (with $h_k \leq h_{k+1}$ for all k), and the corresponding eigenfunctions by ϕ_0 , ϕ_1 , ϕ_2 , \cdots . We suppose the latter to be normalized according to the rule

(1.3)
$$\int_{\mathcal{C}} \phi_k^2 ds = 1 \qquad (k = 0, 1, 2, \cdots).$$

(It is clear from (1.1) and (1.2) that $h_0 = 0$, $\phi_0 = \text{constant.}$) The main interest of the present paper lies in determining an upper bound for the first non-trivial

^{*} Prepared under Contract N6ori-106 task order 5 (NR-043-992) for the Office of Naval Research.

^{**} Now at University of Notre Dame.