Absolute Convergence and Integrability of Trigonometric Series

R. P. BOAS, JR.

Communicated by C. LOEWNER

1. Introduction. Suppose that f(x) is defined on $(0, \pi)$ by the absolutely convergent sine series $\sum b_n \sin nx$. (By this we mean that the series converges absolutely for all x, so that $\sum |b_n|$ converges; similarly for other trigonometric series.) If we expand f(x) in a cosine series $\sum a_n \cos nx$, this cosine series will not necessarily be absolutely convergent (Theorem 10, below). It is therefore of interest to find sufficient conditions for the absolute convergence of the cosine series. A rather general one that we shall obtain is

$$\sum_{n=1}^{\infty} \sum_{k=1}^{\frac{1}{2}n} \frac{|b_{n+k} - b_{n-k}|}{k} < \infty.$$

This implies some more special criteria, for example, that the cosine series converges absolutely if b_n is ultimately decreasing, or if $\sum |b_n| \log n$ converges, or if $\sum n |\Delta b_n|$ converges.

When f(x) is defined by an absolutely convergent sine series, the improper integral $\int_{-0}^{x} x^{-1} f(x) dx$ always converges [1]. We shall show that when the cosine series also converges absolutely, $|x^{-1}f(x)|$ is necessarily integrable. Thus any sufficient condition for the absolute convergence of the cosine series of a function f(x) defined by an absolutely convergent sine series is in particular a sufficient condition for the integrability of $|x^{-1}f(x)|$. A number of known theorems, and some new ones, thus follow from our criteria. (However, these theorems can be proved much more easily directly.) By partial summation, a condition on b_n that makes $|x^{-1}f(x)|$ integrable is equivalent to a condition on Δa_n that makes $\sum a_n \cos nx$ a Fourier series (i.e., the Fourier series of a Lebesgue integrable function). Thus we also obtain a number of theorems on the Fourier character of a cosine series. The most general of these is that $\sum a_n \cos nx$ is a Fourier