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In the mathematical theory of elasticity, two important principles have
been widely used, namely the Theorem of Minimum Potential Energy, a minimal
principle for strains, and Castigliano’s Principle, a minimal principle for stresses
occasionally referred to as a complementary energy principle [1]. On the other
hand, numerous minimal principles have been developed in the mathematical
theory of plasticity due to the need of numerous stress-strain relations. We
shall consider here a stress-strain relation for homogeneous, isotropic, incom-
pressible, strain hardening materials exhibiting a gradual transition from the
elastic to the plastic state, the so-called stress theory of plastic flow [2]. In
differential form the stress-strain relations for loading and unloading respectively
are

ds,‘i = 2G0 de.,;,' - p(E)e“ dE fOr dE > 0 (la)
dS.',' = 2G0 de,',' for dE <0 (1b)

where the differential of stress deviation ds;; and the differential of strain
deviation de,; are defined in terms of the differentials of stress tensor do,; and
strain tensor de;; by ds;; = do;; — %804, and de;; = de;; — 38, ;e—repeated
indices indicate summation in accordance with the summation convention of
tensor calculus, and §,; is the Kronecker delta. G, is the shear modulus in the
elastic range, p(X) is a positive definite function, dependent on the material
under consideration, of the strain invariant E defined as £ = %e;;e;;, and dE
is the loading-unloading criterion. For incompressible materials e, = 0 so that
e;; = €; . By means of stress-strain relations (1) a minimal principle for the
differential of strain deviation has been developed [3]. The purpose of this
paper is to introduce a minimal principle for the differential of stress deviation,
i.e. a complementary energy principle. This pair of minimal principles for the
stress theory of plastic flow can be regarded as analogues to the HonGE-PRAGER
Principle [4] and the accompanying one established by GREENBERG [5] for the
so-called strain theory of plastic flow.

The stress-strain relations (1) have the differential of stress deviation as a
function of the strain deviation and the differential of strain deviation. For
our purposes inverted forms must be obtained so that the differential of strain
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