A Criterion for Homogeneous Linear Differential Equations with Damped Solutions

AUREL WINTNER

Communicated by L. CESARI

1. The results of this paper center about the following Abelian lemma:

(i) If $\omega = \omega(r)$, where $0 < r \le r_0$, is any continuous function for which the product $r\omega(r)$ stays between two positive bounds as $r \to 0$, then there exists a constant $\alpha = \alpha(\omega) > 0$ having the property that

(1)
$$x(r) = O(r^{\alpha})$$
 as $r \to 0$

(and so, in particular, x(+0) = 0) holds for every solution x(r) of the differential equation

$$\frac{d^2x}{dx^2} + \omega^2 x = 0.$$

If in addition $\liminf r\omega(r) > \frac{1}{2}$, then, on the one hand, (1) holds for $\alpha = \frac{1}{2}$ (no matter what the value of $\limsup r\omega(r) < \infty$ may be) and, on the other hand, (2) is stable in the sense of being oscillatory (that is, every real-valued solution $x(r) \equiv 0$ of (2) must change sign an infinity of times as $r \to 0$).

The last assertion (but nothing like the estimate (1) or, for that matter, just x(+0) = 0) is clear from STURM's comparison theorem. For, according to that theorem, it is sufficient to ascertain the oscillatory character of (1) when $r\omega = r\omega(r)$ is a constant $\omega_0 > \frac{1}{2}$. But a direct substitution shows that, if $r\omega(r) = \omega_0$, then $x(r) = r^{\lambda}$ is a solution of (2) if $\lambda^2 - \lambda + \omega_0^2 = 0$. Since the roots of this quadratic equation are $\lambda = \frac{1}{2} \pm i\beta$, where $\beta > 0$, if $\omega_0 > \frac{1}{2}$, the assertion follows from the fact that the zeros of the cosine or of the sine of $\beta \log r$ cluster at r = +0.

A (formal) logarithmic differentiation of the O-estimate of (i), or of the corresponding O-estimate in (ii) below, shows that the issues involved are related to Poincaré's problem concerning Riccati's equation (cf., e.g., [2], pp. 53-54). Correspondingly, the O-assertions in question are of the same type as in classical considerations of Liapounoff [6], pp. 223-224, and Perron [7], [8]. But there the assumptions are quite different and, mainly because of the inclusion of the oscillatory case, quite a different approach will have to be