Extended Asymptotic Eigenvalue Distributions for Bounded Domains in n-Space

F. H. BROWNELL

Communicated by H. Lewy

1. Introduction

Let D be a bounded, open, connected set with boundary B in R_n , n-dimensional Euclidean space. Letting $\nabla^2 u$ denote the Laplacian and ∇u the gradient of u, consider the problem with eigenvalue λ

$$(1.1) \nabla^2 u + \lambda \mu = 0 on D,$$

where $u(\mathbf{x})$ is to be real-valued with continuous second partials over $\mathbf{x} \in D$. For the Dirichlet condition u is to possess a continuous extension over the closure \bar{D} such that

$$(1.2) u = 0 on B.$$

For the Neumann condition ∇u is to possess a continuous extension over \bar{D} such that its normal component

$$\frac{\partial u}{\partial n} = 0 \quad \text{on } B,$$

at least if B is sufficiently smooth; if not, (1.3) will be appropriately modified (see (2.3)).

Let $_{i}\lambda_{i} \leq _{i}\lambda_{i+1}$ be the eigenvalues of the first of these problems if $\nu=0$ and of the second if $\nu=1$, the $_{i}\lambda_{i}$ being repeated according to their multiplicities. We want to study the asymptotic behavior of $N_{i}(\lambda)=\sum_{i,\lambda_{i}\leq\lambda}1$, the number of eigenvalues $\leq \lambda$, as $\lambda \to +\infty$. The original result of Weyl was later obtained by Carleman for dimension n=2 or 3 by applying Tauberian theorems to an asymptotic evaluation of $\sum_{i=1}^{\infty} {}_{i}\lambda_{i}^{-1}({}_{i}\lambda_{i}+\omega^{2})^{-1}$ as $\omega \to +\infty$. This evaluation was found by utilizing the Green function of the "meson" equation operator $-\nabla^{2}+\omega^{2}$, ([16], see bibliography). In two recent papers [13] and [14] Pleijel has found, in addition to Carleman's leading term, the asymptotic series for $\sum_{i=1}^{\infty} {}_{i}\lambda_{i}^{-1}({}_{i}\lambda_{i}+\omega^{2})^{-1}$ in powers of ω^{-1} to any desired order for n=2 or 3. This work assumes the boundary B to be infinitely differentiable everywhere,