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1. Introduction. We shall be concerned in this paper' with an ideal gas,
devoid of viscosity and thermal conductivity, whose behavior is governed by
the following system of non-linear differential equations
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where ¢ denotes the time, p the pressure, p the density, v; the components of
velocity of the gas and v is the gas constant. The above equations are referred
to a system of rectangular coordinates x and the comma indicates partial differ-
entation with respect to these coordinates in the usual manner. Relations (1)
are the equations of motion and the relation (2) is the equation of continuity.
The entropy condition® is expressed by the equation (3). In the special case for
which the motion is stationary this latter equation gives the well known con-
dition that the entropy is constant along stream lines although it may vary
from stream line to stream line.?

A moving surface Z(¢) is said to be singular of order 1 relative to the pressure,
density and velocity if these quantities are continuous across the surface but
at least one of the first derivatives of p, p, or v; with respect to the coordinates

1 Prepared under ONR Contract Nonr-908(09), NR 041 037 with Indiana University.

2 See, T. Y. Taomas, The fundamental hydrodynamical equations and shock conditions for
gases, Math. Mag. 22 (1949) pp. 169-189.

3 In the stationary case the relation between the pressure and density of the gas is given by
p = Np¥ where N is a function which is constant along stream lines. A specialization of this
case arises when we assume that N is constant throughout the gas, or, more generally, if we
assume an equation of state of the form p = f(p) relating the pressure and the density. It may
be noted in this connection that the method of this paper is applicable, with trivial modifica-
tions, when the equation (3) is replaced by the above equation of state provided the function
f(p) is continuous and twice differentiable.
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