On Jordan Algebras with Two Generators
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1. Introduction. A (non-associative) algebra ¥ is called a Jordan algebra
if its multiplication satisfies the identities

1.1 ab = ba, (a’b)a = a’(ba).

We shall assume that the base ring ® or ¥ is a field of characteristic not two.
If 9 is an associative algebra over a field of characteristic not two and multipli-
cation composition (X), then ¥ defines a Jordan algebra U™ relative to the
Jordan multiplication ab = %(@ X b 4+ b X a). A Jordan algebra is called
special if it is isomorphic to a subalgebra of an algebra ™, U associative. It
has been known for a long time that there exist exceptional (non-special) Jordan
algebras and it has been shown by P. CorN [2] that there exist special Jordan
algebras with homomorphic images which are not special.

Recently it was proved by A. 1. SuirsHoV [7] that the free Jordan algebra
with two generators is special. The main purpose of this note is to give a com-
paratively simple alternative proof of this result which gives at the same time
a simple basis for the algebra.®> A sketch of the procedure is as follows. We
begin by studying the free special Jordan algebra &, with two generators.
This is the subalgebra relative to Jordan multiplication generated by two
generators in a free associative algebra §. We obtain a basis for &, which is
defined inductively using Jordan multiplication (§3). We then imitate this
procedure in the free Jordan algebra &, thus defining a set S in & in 1-1 cor-
respondence with the basis for &, . To prove that S is a basis it suffices to show
that [S)* C [S], where [S] is the space spanned by S. The proof of this makes
use of some three variable identities which are of independent interest (§2).

In considering &, , it is possible to encompass the case of characteristic two
by defining a special Jordan algebra as a vector space with a unary composition
a — a' and a binary composition (a, b) — {aba} such that there is a 1-1 linear
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?SHIrsHOV’s result is valid also for rings containing no elements of additive order two.
Our argument could be extended to that case but we shall not insist on this.
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