On an estimate for the curvature of minimal surfaces $z=z(x,y)^*$

JOHANNES C. C. NITSCHE

Communicated by L. Bers

Let the function z = z(x, y) be of class C^2 and a solution of the minimal surface equation in the disc $x^2 + y^2 < R^2$. Introduce the isothermic parameters

(1)
$$\xi = x + \int_{(0,0)}^{(x,y)} W^{-1}[(1+p^2) dx + pq dy] \equiv x + A(x,y),$$

$$\eta = y + \int_{(0,0)}^{(x,y)} W^{-1}[pq dx + (1+q^2) dy] \equiv y + B(x,y).$$

Here $W=(1+p^2+q^2)^{\frac{1}{2}}$. Put $\xi+i\eta=\zeta=\zeta(x,y)$ and $\rho=\min|\zeta|$ for $x^2+y^2=R_{\epsilon}^2$ ($R_{\epsilon}=R-\epsilon$). Without loss of generality for the following it may be assumed that $|\zeta(R_{\epsilon},0)|=\rho$. It has been shown in [6] that the mapping $x,y\to \zeta$ enlarges distances. Hence $\rho>R_{\epsilon}$. The function

(2)
$$F(\zeta) = \frac{p - iq}{1 + W} = \frac{d}{d\zeta} \left[z(x, y) + i \int_{(0, 0)}^{(x, y)} W^{-1}(p \, dy - q \, dx) \right]$$

is a regular-analytic function of ζ , and $|F(\zeta)| < 1$. For the Gaussian curvature K one finds ([6], p. 418)

(3)
$$K = -|F'|^2 \left(1 + \frac{1}{W}\right)^4.$$

The application, as in [4], of Pick's lemma (see [2], p. 14) yields

(4)
$$|F'(0)| \leq \frac{1}{\rho} (1 - |F(0)|^2) = \frac{2}{\rho (1 + W_0)}.$$

^{*} This paper was prepared under Contract N onr-710(16) between the University of Minnesota and the Office of Naval Research.

¹ A rotation in the x, y-plane results in the same rotation in the ζ-plane which does not change distances.

² See for instance L. Bers [1], p. 367; [6].