Generalized Heat Transfer between Solids and Gases under Nonlinear Boundary Conditions

AVNER FRIEDMAN*

Communicated by D. GILBARG

Introduction. Let B be a solid body with a given temperature $\psi(x)$ surrounded by a gas with temperature 1. Then heat will transfer through the surface \dot{B} of B obeying the Newton Law of Cooling

$$\frac{\partial u}{\partial u} = g(u)$$

where u is the temperature of the body, $\partial u/\partial \nu$ is the thermal gradient at the surface evaluated from the interior in the direction of the outward normal and g(u) = K(1-u). For moderate temperatures K is approximately constant; however, for very high or low temperatures K will change much and nonlinearly with the temperature u (for more details and references see [7]). We thus get the following boundary value problem:

(0)
$$\sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}} - \frac{\partial u}{\partial t} = 0 \quad \text{for} \quad x \in B, \qquad t > 0,$$
$$u(x, 0) = \psi(x) \quad \text{for} \quad x \in \overline{B},$$
$$\frac{\partial u}{\partial \nu} = g(u) \quad \text{for} \quad x \in \dot{B}, \qquad t > 0,$$

where g(u) is nonlinear in u.

In what follows we shall not make use of the special form of g but only make use of the following physically evident facts: g(u) is continuous and decreasing in u and g(1) = 0. Furthermore, instead of considering the system (0) we shall

^{*} Prepared under ONR Contract Nonr-222(37) (NR 041 157) with the University of California in Berkeley.