Composition of Solutions of Linear Partial Differential Equations in Two Independent Variables

HANS LEWY*

The purpose of this paper is to establish a formula which associates with any two solutions u and v of a linear homogeneous partial differential equation with constant coefficients in two independent variables x, y a new solution w which depends bilinearly on u and v.

Notations. Let O stand for the origin of the x, y-plane and P and Q for points of a simply connected neighborhood of O. A function of the point Q, say f(Q), will also be written as $f(x_Q, y_Q)$ or $f(\overrightarrow{OQ})$ or $f(P_1P_2)$, provided the vector $\overrightarrow{P_1P_2}$ has the same components x_Q , y_Q as \overrightarrow{OQ} . Differentiation with respect to x_Q or y_Q will be denoted by multiplication from the left by ξ or η , while differentiation with respect to x_P or y_P will be denoted by multiplication from the left by ξ_P or η_P , respectively. It is assumed that all derivatives occurring are continuous unless stated otherwise, and consequently the order of differentiation will not affect the result.

We set

$$Lv(Q) \ = \ L_Q v(Q) \ = \ \sum \, a_{kl} \xi^k \eta^l v(x_Q \ , \ y_Q)$$

where the sum is over all non-negative integers k, l with $k + l \leq \rho$, and we suppose that not all coefficients of order ρ vanish. If Mv is the adjoint differential expression then evidently

$$M_{Q}u(\overrightarrow{QP}) = L_{P}u(\overrightarrow{QP}) = \sum a_{kl}\xi_{P}^{k}\eta_{P}^{l}u(x_{P} - x_{Q}, y_{P} - y_{Q}).$$

In Green's formula

$$\iint_{D} [u(Q)Lv(Q) - v(Q)Mu(Q)] dx dy = \int_{\partial D} B_{1}(u,v) dx + B_{2}(u,v) dy$$

the bilinear forms $B_1(u, v)$ and $B_2(u, v)$ are not uniquely determined. If $B'_1(u, v)$

^{*} This work was supported by ONR 222(62).