A Solvable Exceptional Jordan Algebra

A. A. ALBERT

Communicated by N. Jacobson

In a recent letter from Paris, Nathan Jacobson raised the question of the existence of a solvable exceptional Jordan algebra. A fairly obvious candidate for this place in the family of Jordan algebras can be defined as follows. We let \mathfrak{F} be the simple exceptional Jordan algebra of all three-rowed Hermitian matrices with elements in a Cayley division algebra \mathfrak{F} over a field \mathfrak{F} of characteristic not two, and $\mathfrak{R} = \mathfrak{F}[g]$ be the commutative associative algebra of dimension t over \mathfrak{F} consisting of all polynomials $\alpha_1 g + \alpha_2 g^2 + \cdots + \alpha_t g^t$, with coefficients α_i in \mathfrak{F} , such that $g^{t+1} = 0$. We then form the direct product

This is an algebra of dimension 27t over \mathfrak{F} , and is a Jordan algebra. Indeed, it is trivial to verify that the direct product \mathfrak{G} , of any Jordan algebra \mathfrak{F} and any commutative associative algebra \mathfrak{R} , is a Jordan algebra. Also $\mathfrak{G}' = \mathfrak{G}^2 = \mathfrak{F} \times \mathfrak{R}^2$, $\mathfrak{G}^{(k)} = [\mathfrak{G}^{(k-1)}]^2 = \mathfrak{F} \times \mathfrak{R}^{2k} = 0$ if $2^k > t$. Hence \mathfrak{G} is a solvable Jordan algebra. We shall show that, when t is sufficiently large, the algebra \mathfrak{G} is an exceptional Jordan algebra.

We shall use the method of proof of an earlier note.* The algebra \mathfrak{F} contains three pairwise orthogonal idempotents e_1 , e_2 , e_3 whose sum, $e=e_1+e_2+e_3$, is the unity element of \mathfrak{F} . Then \mathfrak{F} is the vector space direct sum

$$\mathfrak{H} = \mathfrak{H}_1 + \mathfrak{H}_2 + \mathfrak{H}_3 + \mathfrak{H}_{12} + \mathfrak{H}_{23} + \mathfrak{H}_{13} ,$$

where $\mathfrak{H}_i = e_i \mathfrak{F}$ is one-dimensional. The space $\mathfrak{H}_{ij} = \mathfrak{H}_{ji}$ consists of all elements $x_{ij} = x_{ji}$ of \mathfrak{H} such that

(3)
$$2(e_i, x_{ij}) = 2(e_j, x_{ij}) = x_{ij} \qquad (i \neq j; i, j = 1, 2, 3),$$

and it follows that

(4)
$$2(e_k, x_{ij}) = 0 (i \neq j; k \neq i, j).$$

Here we are using (a, b) for the product in the Jordan algebra \mathfrak{F} . The subspaces \mathfrak{F}_{ij} of \mathfrak{F} then each have dimension 8 over \mathfrak{F} , and there are also three linear

^{*} A note on the exceptional Jordan algebra, Proc. Nat. Acad. of Sciences, 36 (1950), pp. 374-374.