On Open Mappings in Banach Algebras¹

CHARLES A. McCARTHY²

Communicated by E. HILLE

We shall be concerned with a Banach algebra $\mathfrak A$ with unit e. The needed information concerning the functional calculus, the Gelfand theory, and Fréchet-analyticity will be found in [2]. Suppose that f is a complex-valued function, holomorphic in an open subset U of the complex plane. If a is an element of $\mathfrak A$ with spectrum $\sigma(a) \subset U$, we can form the element $f(a) \in \mathfrak A$. Denote by $f(\mathfrak A)$ the set of all f(a) with $\sigma(a) \subset U$. The problem of determining necessary and sufficient conditions that a neighborhood of f(a) be contained in $f(\mathfrak A)$ is not yet solved, even in the cases $f(\lambda) = e^{\lambda}$ or $f(\lambda) = \lambda^n$, $n \geq 2$, an integer. However, rather natural sufficient conditions are known in these cases [3]. The general approach here is used to make the proofs more transparent, and the specialization to these cases is immediate.

We use the following additional notations. $\mathfrak{C}(\mathfrak{A})$ is the Banach algebra of all bounded operators on \mathfrak{A} . L_a and R_a are those elements of $\mathfrak{C}(\mathfrak{A})$ defined by $L_a(x) = ax$, $R_a(x) = xa$, a, $x \in A$. $\rho(a)$ is the complement of $\sigma(a)$ in the complex plane, and is the domain of existence of the holomorphic \mathfrak{A} -valued function $R(\lambda, a) = (\lambda e - a)^{-1}$. We will also consider $R(\lambda, L_a)$ and $R(\lambda, R_a)$ in $\mathfrak{C}(\mathfrak{A})$. When λ is a scalar, $(\lambda e - a)$ will be shortened to $(\lambda - a)$.

1. Lemma. $\sigma(L_a) \subset \sigma(a)$. $\sigma(R_a) \subset \sigma(a)$.

Proof. Let $\lambda \in \rho(a)$. Then, in $\mathfrak{E}(\mathfrak{A})$, $\lambda - L_a$ has the two-sided inverse $L_{(\lambda-a)^{-1}}$, so that $\lambda \in \rho(L_a)$. Similarly, $R(\lambda, R_a)$ is $R_{R(\lambda,a)}$ whenever $R(\lambda, a)$ exists.

2. Lemma. Let $a \in \mathfrak{A}$ and $\sigma(a) \subset U$, an open set. Then there is an $\epsilon > 0$ such that if $h \in \mathfrak{A}$, $||h|| < \epsilon$, then $\sigma(a + h) \subset U$.

¹ This paper is a portion of a doctoral dissertation presented to Yale University, under the direction of Professor E. Hille. The author would like to express his gratitude to Professor Hille for his advice and kind encouragement.

² NSF fellow.

³ While this manuscript was in preparation, the author discovered another method of attacking this problem which gives less precise results, but has greater scope of application; the present method promises applications to functional calculi, and, in fact, has so been used by J. Schwartz, *Two Perturbation Formulæ*, Comm. Pure and Appl. Math., 8, 1955.