On Certain Trigonometrical Expansions

H. A. LAUWERIER

Communicated by A. Erdélyi

1. Introduction. The work described in this paper arises from a study of the long waves in the North Sea generated by a wind field.

In this context there occurs the problem of 1.2 how to determine a solution of the equation of Helmholtz

$$\frac{\partial^2 F}{\partial x^2} + \frac{\partial^2 F}{\partial y^2} - q^2 F = 0,$$

in the region $0 < x < \pi$, y > 0, which vanishes for $y \to \infty$, and which satisfies the boundary conditions

(1.2)
$$F = 0$$
 at $x = 0$ and $x = \pi$,

(1.3)
$$\cos \mu \pi \frac{\partial F}{\partial y} - \sin \mu \pi \frac{\partial F}{\partial x} + f(x) = 0 \text{ at } y = 0.$$

It will be assumed that q and μ are given real constants with $q \ge 0$ and $0 \le \mu \le \frac{1}{2}$, and that f(x) is a given real function. In order to simplify the discussion we shall assume that f(x) is an analytic function. In many cases, however, a much less stringent condition may be sufficient.

The condition (1.3) means that at y=0 the solution F(x,y) has a prescribed directional derivative, the direction of which makes a positive angle $\mu\pi$ with the normal. Physically tg $\mu\pi$ is proportional to the coefficient of Coriolis, *i.e.* the angular velocity of the earth.

The solution F(x, y) may be represented as follows

(1.4)
$$F(x, y) = \sum_{1}^{\infty} b_{k} \frac{\sin kx}{k} e^{-y\sqrt{k^{2}+q^{2}}}.$$

The coefficients b_k can be determined by means of the boundary condition (1.3) at y = 0 which gives

(1.5)
$$f(x) = \sum_{1}^{\infty} b_{k} \left\{ \sqrt{1 + \frac{q^{2}}{k^{2}}} \cos \mu \pi \sin kx + \sin \mu \pi \cos kx \right\}.$$

¹ Cf. G. I. TAYLOR, Proc. Lond. Math. Soc. (2) XX 148 (1920).

² Cf. H. Lamb, Hydrodynamics, 6th ed., art. 209 (1932).