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1. Introduction. The main theorem of this paper characterizes those con-
tinuous functions f(f) on @ = ¢ = b which can be represented as

& 1o = [ e =9 g,

where r(t) is a given kernel function of a certain class R (see Definition 1) and
g(s) is of bounded variation on @ = s =< b. Some discussion (Sec. 3) is also given
of approximation to a solution by solutions of finite algebraic systems.

The type of integral kernel to be considered here was suggested by (and
Theorem I has application to) the following problem in prediction theory.
Let 2, , —o» <t < 4 =, be a (say) real-valued, second-order-stationary sto-
chastic process with Ex, = 0 and continuous covariance function r(f) = Ex,x, .
Let —o < a < b < ¢ < + . There exists a well determined random variable
y which is the optimal linear least-squares prediction of the variable z., given
the z, for ¢ £ s =< b. The following question arises: When does there exist a
function g(s) = ¢(s; a, b, ¢) of bounded variation on ¢ < s < b such that

@ y= [ a g

with a suitable definition of the integral? Standard methods show that (2) is
true if and only if

3) r(t —c) = fb r(t — s) dg(s), a =t

I\

b.

Now if one knows, for a given r, that the function f({) = r(¢ — ¢) is in the class
of functions representable as in (1), the above question concerning prediction
is answered in the affirmative.

The above prediction question was raised for the semi-infinite -case,
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