Integral Formulas for Hypersurfaces in Euclidean Space and Their Applications to Uniqueness Theorems

SHIING-SHEN CHERN*

Introduction. Let E be the Euclidean space of dimension n+1. By a hypersurface in E we mean a differentiable manifold M of dimension n and a differentiable mapping $x: M \to E$, whose functional matrix is everywhere of rank n. Since the strength of the differentiability assumptions will not be the issue, we suppose our manifolds and mappings to be of class C^{∞} .

If M is compact, certain immediate integral formulas are valid. More generally, we will derive integral formulas for the hypersurface x and a second hypersurface $x': M \to E$. Such formulas are generalizations of well-known formulas in the theory of convex bodies, which express the mixed volumes of two convex bodies as integrals [1].

Given two compact hypersurfaces, a rigidity or uniqueness theorem gives a sufficient condition such that commutativity holds in the diagram

$$M \xrightarrow{x} E$$
 $x' \searrow E \swarrow T$

where T is a motion in E. Of interest in differential geometry are conditions expressed in terms of the relative curvature of the hypersurface. We review its definition as follows:

Suppose M to be oriented. Then to $p \in M$ there is a uniquely determined unit normal vector $\xi(p)$ at x(p). We put

(1)
$$I = dx^2, \quad II = d\xi dx, \quad III = d\xi^2,$$

where dx, $d\xi$ are vector-valued linear differential forms in M and multiplication is in the sense of the scalar product in E. These are three quadratic differential forms in M (the "fundamental forms"), of which I is positive definite. The eigenvalues k_1 , \cdots , k_n of II relative to I are called the principal curvatures. If the Gauss-Kronecker curvature $K = k_1 \cdots k_n \neq 0$, the reciprocals $1/k_1$, \cdots , $1/k_n$ are called the radii of principal curvature; they are the eigenvalues of II

^{*}Work done under partial support from the National Science Foundation.