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The object of this note is to prove the following theorem:

Let =, ' be two closed, strictly convex, C*-differentiable hypersurfaces in a
Euclidean space of dimension n + 1 (= 3). Let f: = — Z’ be a diffeomorphism
such that Z and Z’' have parallel outward normals at p ¢ = and p’ = f(p) respectively.
Denote by P,(p) (respectively P,(p")) the I** elementary symmetric function of the
principal radii of curvature of = (resp. Z') at p (resp. p”). If, for a fired [, 2 S 1 S n,
we have

€)) Pi_i(p) = Pii(p), Py(p) 2 P,(p)
for all points p e =, then f is a translation.

The interest in this theorem lies in the fact that the conditions (1) involve
only inequalities. The proof of the theorem depends on some integral formulas
established in a previous paper of one of us® and on an algebraic inequality.

Let (\ix), (A\k), 1 < 4, k = n, be positive definite symmetric matrices. We
define the polynomials P,,(A, ') by means of the equation
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P,,(\, \') are thus homogeneous polynomials of degrees r, s in \;;, , \;} , respec-
tively. It is easy to derive from the definition that

®) PP a( V) = 3 N e,
15k akzk
Since P,,(\, N') is independent of A}, , we shall write P,,(\, \') = P,(\); then
Py.(\, N) = P,(\).
Lemma. Let o = (a;), N = (\;x) be positive definite symmetric matrices such
that, for a fizred [, 2 = 1 < n,

(4) Pl—l(a) = Pz—1()\); Pz(a) = on‘)'
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