A Uniqueness Theorem on Closed Convex Hypersurfaces in Euclidean Space

S. S. CHERN, J. HANO & C. C. HSIUNG¹

The object of this note is to prove the following theorem:

Let Σ , Σ' be two closed, strictly convex, C^2 -differentiable hypersurfaces in a Euclidean space of dimension n+1 (≥ 3). Let $f: \Sigma \to \Sigma'$ be a diffeomorphism such that Σ and Σ' have parallel outward normals at $p \in \Sigma$ and p' = f(p) respectively. Denote by $P_1(p)$ (respectively $P_1(p')$) the l^{th} elementary symmetric function of the principal radii of curvature of Σ (resp. Σ') at p (resp. p'). If, for a fixed $l, 2 \leq l \leq n$, we have

(1)
$$P_{l-1}(p) \leq P_{l-1}(p'), \quad P_l(p) \geq P_l(p')$$

for all points $p \in \Sigma$, then f is a translation.

The interest in this theorem lies in the fact that the conditions (1) involve only inequalities. The proof of the theorem depends on some integral formulas established in a previous paper of one of us² and on an algebraic inequality.

Let (λ_{ik}) , (λ'_{ik}) , $1 \leq i, k \leq n$, be positive definite symmetric matrices. We define the polynomials $P_{rs}(\lambda, \lambda')$ by means of the equation

(2)
$$\det \left(\delta_{ik} + y\lambda_{ik} + y'\lambda'_{ik}\right) = \sum_{0 \leq r,s \leq n} \frac{n!}{r! \, s! \, (n-r-s)!} P_{rs}(\lambda,\lambda') y^r y'^s.$$

 $P_{rs}(\lambda, \lambda')$ are thus homogeneous polynomials of degrees r, s in λ_{ik} , λ_{ik}' , respectively. It is easy to derive from the definition that

(3)
$$rP_{r-1,1}(\lambda, \lambda') = \sum_{i \leq k} \lambda'_{ik} \frac{\partial P_{r0}}{\partial \lambda_{ik}}.$$

Since $P_{r0}(\lambda, \lambda')$ is independent of λ'_{ik} , we shall write $P_{r0}(\lambda, \lambda') = P_r(\lambda)$; then $P_{0r}(\lambda, \lambda') = P_r(\lambda')$.

Lemma. Let $\alpha = (\alpha_{ik})$, $\lambda = (\lambda_{ik})$ be positive definite symmetric matrices such that, for a fixed l, $2 \le l \le n$,

$$(4) P_{l-1}(\alpha) \leq P_{l-1}(\lambda), P_{l}(\alpha) \geq P_{l}(\lambda).$$

¹The first two authors are partially supported by the National Science Foundation, and the third author is supported by the Air Force Office of Scientific Research.

²S. S. Chern, Integral formulas for hypersurfaces in Euclidean space and their applications to uniqueness theorems, this Journal, 8 (1959), pp. 947-955. This paper will be quoted as IFH.