The Holonomy Group III. Metrisable Spaces*

VÁCLAV HLAVATÝ

1. Description of the problems. This paper is a direct continuation of [1] and [2].† It is based on the results (and symbolism) of [2]. Whenever it is necessary, these results will be quoted in the text.

Let us denote by $L_{\omega\mu\lambda}$ either the curvature tensor $R_{\omega\mu\lambda}$ of a volume preserving L_n or the curvature tensor $K_{\omega\mu\lambda}$ of a Riemann space V_n . In the first case $L_{\omega\mu\lambda}$ must satisfy the identities

(1.1) (a)
$$L_{(\omega\mu)\lambda}^{\nu} = 0$$
, (d) $L_{[\omega\mu\lambda]}^{\nu} = 0$, (1.1) (c) $L_{\omega\mu\lambda}^{\lambda} = 0$, (d) $\nabla_{[\xi}L_{\omega\mu]\lambda}^{\nu} = 0$.

In the second case it must satisfy the identities (1.1a, b, c, d) and

(1.1)
$$\begin{array}{ll} \text{(e)} & L_{\omega\mu(\lambda\nu)} = 0, \\ \\ \text{(f)} & L_{\omega\mu\lambda\nu} = L_{\lambda\nu\omega\mu} \; . \end{array}$$

Denote by $g_{\lambda\nu}$ a symmetric tensor of rank n and by $g^{\lambda\nu}$ its inverse,

$$(1.2) g^{\lambda \nu} g_{\lambda \mu} = \delta^{\nu}_{\mu} ,$$

and consider the following system of equations:

$$(1.3) \qquad L_{\omega\mu\lambda}^{\ \ \nu} = \partial_{\{\mu} \{ g^{\nu\alpha} (\partial_{\omega 1} g_{\alpha\lambda} + \partial_{[\lambda 1} g_{\omega]\alpha} - \partial_{[\alpha 1} g_{\omega]\lambda} \} + \frac{1}{2} g^{\nu\beta} (\partial_{\alpha} g_{\beta [\mu} + \partial_{[\mu} g_{\alpha\beta]} - \partial_{\beta} g_{\alpha [\mu}) g^{\alpha\delta} (\partial_{\omega 1} g_{\lambda\delta} + \partial_{[\lambda 1} g_{\omega]\delta} - \partial_{[\delta 1} g_{\omega]\lambda}).$$

If $g_{\lambda\mu}$ is not known and $L_{\omega\mu\lambda}^{\nu}$ is given, (1.3) represents a system of differential equations for $g_{\lambda\mu}$. Then one of our problems may be formulated as follows:

- 1(a). One has to find necessary and sufficient conditions for (1.3) to admit at least one solution $g_{\lambda_{\nu}}$.
- 1(b). If these conditions are satisfied, one has to find the explicit form of at least one solution $g_{\lambda_{r}}$.
 - 1(c). If one solution is given, one has to find the explicit form of all solutions.

^{*}This paper was prepared with the support of the Aeronautical Research Laboratory, Wright Air Development Center, Contract No. AF 33(616)-5695.

[†]These papers will be denoted by I and II.