Polynomials Associated with Divisors*

ERNST SNAPPER

Introduction. Let X be an irreducible, normal, projective variety of dimension r with sheaf of local rings L, and defined over an arbitrary groundfield. We select n, not necessarily distinct, divisors D_1 , \cdots , D_n of X which are all locally linearly equivalent to zero, and we select an algebraic coherent sheaf F of X. We proved in Theorem 9.1 of [3] (square brackets refer to the references) that the Euler-Poincaré characteristic $\chi(X, F(x_1D_1 + \cdots + x_nD_n))$ is a rational polynomial in x_1 , \cdots , x_n for all x_1 , \cdots , x_n ε Z. The purpose of the present paper is to investigate the coefficients of this polynomial. (Rational polynomial means a polynomial with rational numbers as coefficients.)

Let Q be the field of rational numbers. We select n nonzero elements $h_1, \dots, h_n \in Q$, define the polynomials $C(x_1, i_1, h_1), \dots, C(x_n, i_n, h_n)$ as in Definition 1.1, and denote the product of these n rational polynomials by $[i_1, \dots, i_n]$. The polynomials $[i_1, \dots, i_n]$, for $i_1, \dots, i_n \geq 0$, form a linearly independent Q-basis of $Q[x_1, \dots, x_n]$, i.e. if $\alpha \in Q[x_1, \dots, x_n]$, then $\alpha = \sum a(i_1, \dots, i_n)[i_1, \dots, i_n]$, where the rational numbers $a(i_1, \dots, i_n)$ are uniquely determined by α . The rational polynomials α we are concerned with evidently have the special property that they take on integral values for integral values of the variables. We conclude easily from Chapter II of [1] that, for polynomials with this property, all $a(i_1, \dots, i_n)$ become integers if each "increment" h_i is chosen equal to +1 or -1.

If F = L and n = 1 and D is a divisor cut out on X by a hyperplane of the ambient projective space, the polynomial $\chi(X, L(xD))$ is the classical Hilbert polynomial of X. It is customary to expand this polynomial in terms of the "binomial coefficients" $\binom{x}{0} = 1, \binom{x}{1}, \dots, \binom{x}{r}$. Precisely then, it is customary to choose the increment h = 1, and to put $\chi(X, L(xD)) = \sum a(i)[i]$, where the summation index i runs from 0 to r. (Observe that now $[i] = C(x, i, 1) = \binom{x}{i}$.) The result is unsatisfactory because only the coefficients a(0) and a(r) have good geometric meaning. We have observed that if we use the increment h = -1 instead of h = +1, a(0) and a(r) remain unchanged, but all the intermediate

^{*}This research was supported in part by National Science Foundation Grant No. G5883.