Solutions to Riccati's Problem as Functions of Initial Values

G. S. McCARTY, JR.

Communicated by E. HILLE

Introduction. R. M. Redheffer has constructed [1] a set of functions defined by the solution of a Riccati problem. Considering the solutions of his defining equations as functions of both the independent variable y and an initial point x at which the functions vanish, he shows that if

(1)
$$u_{\nu} = a(y) + 2b(y)u + c(y)u^{2}, \qquad u(x, x) = 0;$$
$$v_{\nu} = b(y) + c(y)u, \qquad v(x, x) = 0;$$
$$w_{\nu} = c(y) \exp(2v), \qquad w(x, x) = 0$$

in an open convex set symmetric about y = x; and if v(x, y) is continuous in x, then the partial derivatives with respect to x exist there and satisfy

(2)
$$-w_{x} = c(x) + 2b(x)w + a(x)w^{2};$$
$$-v_{x} = b(x) + a(x)w;$$
$$-u_{x} = a(x) \exp(2v).$$

Furthermore, Redheffer shows the following functional equations are valid whenever u, v and w satisfy (1) and the points (x, y), (x, z) and (y, z) are in the set:

$$\frac{u(x,z) - u(y,z)}{u(x,y)} = \exp \left[-v(x,y) + v(x,z) + v(y,z) \right],$$
(3)
$$1 - u(x,y)w(y,z) = \exp \left[v(x,y) - v(x,z) + v(y,z) \right],$$

$$\frac{w(x,z) - w(x,y)}{w(y,z)} = \exp \left[v(x,y) + v(x,z) - v(y,z) \right].$$

In Theorem III of [1] the first of equations (3) is considered in a form which holds when u(x, x) and v(x, x) differ from zero, namely

$$\frac{u(x,z) - u(y,z)}{u(x,y) - u(y,y)} = \frac{\exp [v(x,z) + v(y,z)]}{\exp [v(x,y) + v(y,y)]}.$$

Journal of Mathematics and Mechanics, Vol. 9, No. 6 (1960).